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Abstract. Wavefunctions of one and two-dimensional quantum systems can be parametrized
by a finite number of zeros lying in phase space. We study correlations of these zeros for
fully chaotic systems in terms of a statistical model based on random polynomials. Excellent
agreement is found for the two-point correlation function and nearest-neighbour spacing
distribution of this model and the results obtained for wavefunctions of dynamical systems.
We conjecture that these correlation functions are valid for any chaotic system after rescaling
the phase-space distances (unfolding). Some consequences for the distribution of zeros due to
time-reversal symmetry are also discussed.

1. Introduction

The statistical properties of the quantum eigenvalues of classically chaotic systems are
known to be, in the universal regime, in agreement with the results of the appropriate
symmetry class of random matrix ensembles (see e.g. [1, 2]). One basic feature emerging
from these ensembles is the repulsion between energy levels. This repulsion can be
interpreted as an electrostatic repulsion, since the joint probability density of the eigenvalues
of Gaussian ensembles can be interpreted as the probability density for the positions of a
one-dimensional gas of charged particles interacting via a two-dimensional Coulomb force
[3]. The Coulomb gas model was moreover extended to non-equilibrium ensembles, the
so-called Dyson’s Brownian motion model (see ch 8 in [1]), which has been useful in the
study of the transition between different symmetry classes.

In contrast, the wavefunctions of quantum chaotic systems have so far remained a
relatively less explored (as compared to spectra) area, notwithstanding their importance in
quantum mechanical as well as semiclassical analysis. Studies of statistical properties of
wavefunctions of chaotic systems have been done in the past for two-dimensional chaotic
billiards [4] or mappings [5], as well as experimental tests [6]. These are mainly concentrated
on the validity of the Porter–Thomas distribution and the spatial autocorrelation function.
The former is a limited test of the full distribution of the wavefunction (see equation (4)
below), since it is equivalent to the fact that the distribution of one amplitudeak is Gaussian.
In this paper our aim is to study the statistical distribution of zeros of ‘quantum chaotic’
wavefunctions expressed in phase-space representation. The interest in the phase space study
of nodal patterns arises following a study by Lebœuf and Voros [7] where they show that the
coherent state representation of wavefunctions of one-dimensional systems (i.e. Bargmann

§ Present address: Department of Physics, Indian Institute of Science (IISC), Banglore 560012, India.
‖ Unité de recherche des Universités de Paris XI et Paris VI associée au CNRS.

0305-4470/96/164827+09$19.50c© 1996 IOP Publishing Ltd 4827



4828 P Lebœuf and P Shukla

or Husimi functions) have a finite numberN of zeros (N being proportional to the dimension
of Hilbert space) and the quantum state is uniquely defined, up to a normalization constant,
by their positions. This scheme can be easily extended to two dimensions [8]. Furthermore,
their numerical studies on quantum maps (e.g. Baker and kicked rotor) have also revealed
that, in the semiclassical regime ¯h → 0, the zeros condense on lines for classically integrable
systems whereas for strongly chaotic quantum maps they appear to diffuse fairly uniformly
over the phase space. Thus, the direct manifestation of classical motion in the distribution
of zeros makes it relevant to seek further information about their behaviour, in particular
about their correlations.

As we will see in the next section, assuming that the amplitudes of a quantum eigenstate
have a Gaussian independent distribution (cf equation (4) below) and, moreover, considering
a coherent state representation of quantum mechanics, we end up with a statistical model for
the study of wavefunctions of chaotic systems in terms of random polynomials. From this
model, which was introduced in [9], we compute the joint probability density for the zeros
of wavefunctions. This probability density can be interpreted as the probability density
of a two-dimensional gas ofN interacting particles lying in phase space. Aside from a
two-dimensional Coulomb force, there are alson-body interactions, with 36 n 6 N . In
section 3 the nearest-neighbour spacing distribution and the two-point correlation function
are studied and compared to results obtained from different physical and/or mathematical
models. Our main conclusions are that there exists a strong repulsion between zeros which
makes the gas of zeros quite rigid (quadratic repulsion at short distances) and that the results
obtained from the model of random polynomials are in very good agreement with those
originated in quantum chaotic systems. Finally, section 4 deals with some consequences for
the distribution of zeros due to a time reversal symmetry. While this work was in progress,
we learned of an analytical computation of correlations of zeros by Hannay [10]. We have
included his result concerning the two-point function in section 3.2.

2. The joint probability density

For definiteness, let us for the moment consider the case of a spinJ system, whose modulus
J is preserved by the dynamics (different geometries will be considered later). Classically
the motion of the arrowJ in the three-dimensional space can be represented by a point
moving on the surface of a two-dimensional (Riemann) sphere, denotedS, which is the
phase space. Quantum mechanicallyJ can only take the values12, 1, . . . , while the Hilbert
space is finite and(2J + 1)-dimensional. An arbitrary quantum state of the spin projected
onto spin (orSU(2)) coherent-states|z〉 can be written [11, 12]

ψ(z) =
N∑
k=0

√
CkNakz

k (1)

whereN = 2J andCkN are the binomial coefficients. We assume for the moment that the
system has no time-reversal symmetry (see however section 4), and hence the amplitudes
{ak} are complex. For convenience the radius of the sphere, given by ¯h

√
J (J + 1), is

normalized to one. Then the classical limit of such models corresponds toN = 2J → ∞.
Moreover the complex variablez labelling the coherent states and appearing in equation (1)
is connected to the variables(θ, ϕ) spanning the Riemann sphere by a stereographic
projection of the plane onto the sphere given byz = cot(θ/2)eiϕ . The functionψ(z)
is therefore an analytic function defined on the two-dimensional sphere. The normalization
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in the space of functions is given by
N∑
k=0

|ak|2 =
∫

d2z µ(z, z̄)|ψ(z)|2

where the measure isµ(z, z̄) = (N + 1)/[π(1 + |z|2)(N+2)]. Becauseψ(z) is a polynomial
of degreeN , it hasN zerosz = (z1, z2, . . . , zN) in that space which completely determine,
up to a global normalization factor, the quantum state

ψ(z) = aN

N∏
k=1

(z − zk). (2)

Now that we have introduced the framework let us concentrate on statistical properties.
Assume thatψ(z) given by (1) is an eigenstate of a chaotic system. There is a prediction
of the random matrix theory (RMT) for the amplitudes{ak} which follows directly from the
symmetries of the ensemble. Assuming there is no time-reversal symmetry, the invariance
under unitary transformations of the Gaussian unitary ensemble implies that the joint
distribution function of the complex amplitudesa = (a0, a1, . . . , aN) is given by [6]

DRMT (a) = 1

|S2(N+1)|δ
[

1 −
N∑
k=0

|ak|2
]

(3)

where|Sn| = 2πn/2/0(n/2) is the surface of an(n− 1)-dimensional sphere of unit radius.
If we are concerned by average properties of functions that depend only on the zeros of
ψ(z), the distribution (3) for the coefficients is strictly equivalent to

D(a) = 1

(2π)(N+1)
exp

{
− 1

2

N∑
k=0

|ak|2
}
. (4)

This is because, as shown on p 6 of [13], both averages are equal when computed over a
function which does not depend on the modulus ofa. Thus, for our purposes, the real and
imaginary part of the amplitudesak can be considered as Gaussian uncorrelated random
variables.

From (4) it is easy to compute the joint probability distribution for the zeros
[9, 14, 10]. The change of variablesD(a) d2a0 . . .d2aN = D(z) d2z1 . . .d2zN (where
d2x ≡ d(Rex) d(Im x)) leads to

D(z) = N !

πN
∏N
k=0C

k
N

{ ∏
i<j

|zi − zj |2
[(

1 + 1

CN−1
N

|z1 + z2 + · · · |2

+ 1

CN−2
N

|z1z2 + z1z3 + · · · |2 + · · · + 1

C0
N

|z1z2 · · · zN |2
)N+1]−1}

. (5)

If this probability density is interpreted as the Boltzmann factor of a partition function then
the set of zeros can be thought of as a two-dimensional gas of interacting particles. The
numerator of (5), coming from the Jacobian of the transformation, contributes with a factor
proportional to a two-dimensional Coulomb potential ln|zi−zj |. The denominator, however,
contributes with terms that can be interpreted asn-body interactions, with 36 n 6 N [15].
The functionD(z) has also been re-expressed and interpreted geometrically in terms of the
relative coordinates of the zeros on the sphere [10]. Moreover, for this ensemble it was
shown [9, 14, 10] that for arbitraryN the density of zeros is uniform on the Riemann sphere
(a sort of ergodicity of wavefunctions).

It is interesting to compare (5) with a different and well known two-dimensional
distribution of points on the plane, defined by the joint probability density for the eigenvalues
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zi of a Gaussian ensemble ofN ×N complex matrices obtained by Ginibre [16]

DGin(z) = N exp

(
−

N∑
k=1

|zk|2
) ∏
i<j

|zi − zj |2 (6)

which can be physically interpreted as a two-dimensional one-component plasma [17]. In
this case the density is uniform in thez-planez = x + iy inside a disk of radiusr ∼ √

N

[1], and zero outside.

3. Correlations

Our purpose in this section is, on the one hand, to understand the nature of the correlations
between zeros and on the other to explore to what extent the predictions of the model (5)
agree with the results obtained for wavefunctions of classically chaotic systems. As a model
of a chaotic system, we have chosen a kicked top map [5], defined by the unitary operator

U = e− iν
2h̄ J

3
z e− i

h̄
µJxe− i

2h̄ pJ
2
z (7)

acting on the(2J + 1)-dimensional Hilbert space. The eigenfunctions are determined by
the stationary equation

U |ψα >= eiωα |ψα〉 α = 1, . . . ,2J + 1

which was solved, for all the numerical computations of correlations quoted below, for
J = 49. The matrixU was diagonalized for 294 different sets of parameters centred around
p = 17,µ = 2, ν = 6 for which the classical dynamics of the map is dominated by chaotic
trajectories. Correlations of zeros were computed for each eigenfunction and all the results
of the 99× 294 eigenfunctions superimposed in order to have better statistics.

3.1. Nearest-neighbour spacing distribution

We have computed numerically the nearest-neighbour spacing distributionP(r) between
zeros, shown in figure 1: this quantity is defined as the probability distribution for the
distance between a zero and its nearest neighbour. The distribution was normalized with
the average number of points lying at a distancer from a reference point, sin(1r), with r
being the arc length (or relative angle) on the sphere measured in units of the mean spacing
1 = √

4π/N between zeros. The broken curve is the result obtained from 29 106 different

Figure 1. Nearest-neighbour spacing distribution. Full curve: zeros of eigenstates of the kicked
top map (7). Broken curve: zeros of random polynomials. Dotted line: formula (8) (N = 2).



Correlations of zeros of chaotic wavefunctions 4831

trials of the random polynomial (1) forN = 98 with the distribution (4) for the coefficients.
This gives the same total number of zeros as for the kicked top model (7), represented in the
figure by a full curve. The agreement between the correlations for the dynamical system and
those of random polynomials is excellent, and the two curves are almost indistinguishable.

In the absence of an analytical solution for the nearest-neighbour spacing distribution
at arbitrary (or asymptotic)N , we may compute the spacing distribution forN = 2. This
would be the analogue of the Wigner surmise for the nearest-neighbour spacing distribution
of eigenvalues of random matrices, computed for 2× 2 matrices. From (5) forN = 2 and
changing variables we find

D2(θ1, ϕ1, θ2, ϕ2) = 2

π2

(1 − cosξ)

(3 + cosξ)3
.

whereξ is the relative angle between zeros, cosξ = sinθ1 sinθ2 cos(ϕ1 −ϕ2)+cosθ1 cosθ2.
The interpretation of this probability density as the Boltzmann factor of a partition function
exp(−βV ) gives two terms for the potential. As already mentioned, the first one (coming
from the numerator) can be interpreted as a two-dimensional Coulomb repulsion with a
distance proportional to the chord length on the sphere, while the second one is also repulsive
but with a force vanishing at zero distance.

The probability density of the spacingr between the two zeros may be obtained by
integration. Normalizing by the Jacobian, we finally find

P2(r) = 32
√

2

7

[1 − cos(πr)]

[3 + cos(πr)]3
(8)

which satisfies the normalization conditions
∫ 2

0 P2(r) dr = ∫ 2
0 rP2(r) dr = 1. For short

distancesP2(r) ' π2r2/(14
√

2)+ O(r4), which reveals a strong repulsion (see below).
The coefficient of the quadratic term is, however, too small since the exact one, computed
in the next subsection, isπ/2 (cf equation (10)). The disagreement betweenP2(r) andP(r)
computed for large values ofN is not limited to short distances. The curve (8), represented
in figure 1 by a dotted line, is not a good approximation toP(r) for any value ofr.

For comparison with the previous results, we quote here the nearest-neighbour spacing
distribution for uncorrelated points thrown at random on a two-dimensional plane

P̃u(r) = π

2
r exp

(
−π

4
r2

)
which becomes, dividing out the geometrical factor and normalizing

Pu(r) = N P̃u(r)

r
= 2

π
exp

(
− 1

π
r2

)
which has no repulsion at short distances.

3.2. Two-point correlation function

The two-point correlation functionR2(r1, r2) = 〈ρ(r1)ρ(r2)〉 (and more generally the
k-point correlation function) for the joint probability density (5) was recently computed
analytically by Hannay [10]. Hereρ is the density of zeros,(r1, r2) are two points on
the sphere and the brackets denote ensemble average. Because the density is constant,R2

depends only on a relative coordinate. In the asymptotic large-N limit it is given by

R2(r) ' [(sinh2 v + v2) coshv − 2v sinhv]

sinh3 v
(9)

wherev = πr2/2 andr is, as in the previous subsection, the arc length separating two zeros
on the sphere normalized to the mean spacing1 = √

4π/N . Again, as for the spacing
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distribution, geometrical factors have been divided out. This function has the limiting
behaviour

R2(r) ' π

2
r2 + O(r6) r → 0

R2(r) ' 1 + π2r4e−πr2 + O(r2e−πr2
) r → ∞.

(10)

We have numerically computed this quantity for the kicked top map, shown in figure 2 by
a full curve. In the same figure, equation (9) is represented by a broken curve. Again, the
agreement is excellent for allr, and the two curves are so close to each other that they are
indistinguishable in the figure. Notice the bump aroundr = 1 that characterizes the curve.
The inset shows a close view of the behaviour at the origin.

Figure 2. Two-point correlation function. Full curve: zeros of eigenstates of the kicked top
map. Broken curve: the curve (9) computed for zeros of random polynomials. (The two curves
are almost indistinguishable). The inset shows a close view of the behaviour at the origin.

These results can be compared to other statistical models. Using the same normalization,
for the set of uncorrelated random points quoted above we haveRu2(r) = 1, ∀r . It is also
interesting to compare with the two-point correlation function for Ginibre’s ensemble (6),

RGin2 (r) = 1 − e−πr2

which has no bump and behaves at the origin asπr2.

3.3. Universality

The maximum value ofr plotted in figure 2 is 8.75, which corresponds toπ in non-
normalized units:π

√
N/4π ' 8.75 for N = 98. Figure 2 then covers the whole range

of possible distances that can occur between two zeros on the sphere, and in all that range
the agreement with the model of random polynomials is excellent. This differs from what
happens for spectral statistics [18], where very long range correlations are non-universal,
i.e. system-dependent. Whether this full agreement with the model of random polynomials
is a special feature of the mapping considered, or if non-universalities appear in higher
correlation functions, are questions that deserve further investigation.

It could be argued that the correlations obtained in the present paper are only applicable
to spin systems, since they were obtained for a special class of random polynomials.
However, asN → ∞ the mean spacing between zeros tends to zero, and for sufficiently
small distances the Riemann sphere can be considered,locally, as a flat space. And indeed
in equation (9) the distancer can equally be considered as the arc length or the chord
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length separating two zeros (the expression (9) converges so fast to 1 asr increases that
even for large distances compared to the mean spacing the error made by using the chord
length instead of the arc length is negligible). Because of these arguments, we expect the
correlation functions computed from the model (5) to beuniversal, i.e. applicable to any
chaotic system, independently of the geometry of phase space.

To check this conjecture let us consider for example a chaotic map on the two-
dimensional torus, the well known kicked rotor [19]. It is defined by the unitary operator

U = e− i
4h̄ (p+γ1)

2
e− iK

4π2h̄
cos(2πq+γ2)e− i

4h̄ (p+γ1)
2

(11)

acting on anN -dimensional Hilbert space of periodic functions (up to a phase). Hereq and
p are the usual position and momentum operators, and ¯h = 2π/N . The parametrization of
wavefunctions in terms of zeros for systems defined on the torus was considered in [7], and
the reader is referred to that reference for details. Figures 3(a) and (b) show, respectively,
the two-point correlation function and the nearest-neighbour spacing distribution obtained
for N = 99,K = 20 000 (fully chaotic regime) andγ1 = 0.7071,γ2 = π/2N . No average
over the parameters was done in this case, and accordingly the statistical errors are bigger
than for the kicked top. In figure 3(a) we have also plotted the curve (9) and in figure 3(b)
the curve obtained numerically from the polynomial (1) with random coefficients (the same
as in figure 1). The agreement is very good, and supports our conjecture. Though this
test was done for a mapping, there is no reason to limit the conjecture to one-dimensional
(time-dependent) systems. And indeed, some recent computations confirm the universality
of correlations of zeros of wavefunctions in two-dimensional chaotic systems [20].

Figure 3. Statistical properties of the zeros of eigenstates of the kicked rotor (11) (histogram).
The broken curves are the results for random polynomials (same as in figures 1 and 2). (a) Two-
point correlation function. (b) Nearest-neighbour spacing distribution. (c) Number variance.

We have also computed for the kicked rotor the number variance, defined as the
fluctuation in the number of zerosn(r) inside a disk of radiusr, δn2 = n̄2 − n̄2. This
quantity is the two-dimensional analogue of the number variance quite often used in spectral
statistics. For uncorrelated random points the variance increases asr2. Figure 3(c) shows
that for larger the growth of the number variance, for the model of random polynomials
as well as for chaotic dynamical systems, is much slower than that. This long-range order
reflects the strong rigidity of the gas (5) due to the repulsion between zeros.

4. Time-reversal symmetry

When a chaotic system has a time-reversal symmetry, instead of GUE the appropriate
ensemble of random matrices is the Gaussian orthogonal. This is so because the
wavefunctions can now be chosen real, and orthogonal transformations in Hilbert space
replace unitary transformations. As a consequence the repulsion between energy levels is
linear instead of quadratic [1].
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Concerning wavefunctions, it is natural to ask what are the changes in the distribution
of zeros induced by a time-reversal symmetry, and in particular how the correlations are
modified.

The appropriate model to consider these questions is a set of random polynomials with
real coefficients. We hence consider polynomials of the form (1) with a distribution (4) for
the coefficients but with a reala vector. There is an immediate consequence of the latter
condition: if zk is a zero ofψ(z), then z̄k is also. This means that the zeros either come
by pairs symmetric with respect to the real axis or they are single and real. This leads
to the question of how many real zeros this set of random polynomials has, on average.
The answer, found recently by Edelman and Kostlan [21], is

√
N . Although the fraction of

real roots vanishes in the semiclassical regime, the appearance of a privileged axis in phase
space implies that the uniformity of the density of zeros valid for the model (5) is lost.

Aside from the density, the correlations are also modified. Although we have not
computed them analytically for arbitraryN , let us illustrate this point with a simple example.
We again consider the caseN = 2 and compute the Jacobian of the transformation when
the coefficients are real. The zeros are related to the coefficients of the polynomial via

a1/a2 = −(z1 + z2)/
√

2

a0/a2 = z1z2.
(12)

Because the left-hand side of these equations is real, there are two different solutions
corresponding to the two possibilities mentioned above:

(i)

y1 = y2 = 0

a1/a2 = −(x1 + x2)/
√

2

a0/a2 = x1x2

(13)

and (ii)

x1 = x2 y1 = −y2

a1/a2 = −
√

2x1

a0/a2 = x2
1 + y2

1

(14)

where we have introduced the notationz = x+iy. The Jacobian for case (i) isJ ∝ |x2−x1|,
i.e. real roots repel linearly. For case (ii), the Jacobian isJ ∝ |y1|, meaning that even when
they are complex, but lying on different sides of the symmetry line, the zeros repel linearly.
This is different from the quadratic repulsion found in previous sections in the case of
complex coefficients. It also means that the density of complex zeros decreases linearly
when the symmetry line is approached (aside from the

√
N -concentration of zeros aty = 0),

thus creating a ‘hole’ in the density around that line. This effect was observed numerically
in previous papers [9, 14]. Moreover, we can also test the repulsion between complex roots
lying on the same side of the symmetry line. For that purpose, we have computed the
Jacobian forN = 4, written in terms of the coordinates of the zerosz1 andz2 lying on one
side, the other two being symmetric. We foundJ ∝ |z1−z2|2 (with a complicated prefactor
depending on the position), i.e. like in the case of complex coefficients. Although we have
not checked it numerically, we suspect that the correlations of zeros lying on the same
side and sufficiently far from the symmetry line coincide in general with those obtained for
complex coefficients.
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5. Conclusion

Because the results concerning the density of zeros and their correlations depend on the
Gaussian nature of the distribution as well as on their independence, the results presented
here go beyond a simple verification of the Porter–Thomas distribution (or its complex
analogue).

The correlations obtained from the spin model (equation (5)) are expected to hold for
the quantization of any chaotic mapping (as verified here for the kicked rotor (figure 3))
but also in higher dimensional dynamical systems. The parametrization of wavefunctions
by their zeros can be adapted to two-dimensional systems via Poincaré surface-of-section
methods [8], and some recent computations of correlations support their universality [20].
However, for more than two dimensions the parametrization ceases to be valid.

One may expect, as for the spectral statistics, that corrections coming from short periodic
orbits manifest themselves in the statistical properties of wavefunctions. For the nearest-
neighbour spacing distribution and the two-point correlation function studied in this paper
no traces of non-universality were found. More detailed work as well as a study of higher
correlation functions can help in elucidating this question.
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